Parametric Signal Modeling and Linear Prediction Theory 4. The Levinson-Durbin Recursion

Electrical \& Computer Engineering University of Maryland, College Park

Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu. The LaTeX slides were made by Prof. Min Wu and Mr. Wei-Hong Chuang.
Contact: minwu@umd.edu. Updated: November 12, 2012.

Complexity in Solving Linear Prediction

(Refs: Hayes §5.2; Haykin 4th Ed. §3.3)
Recall Augmented Normal Equation for linear prediction:

$$
\underline{\text { FLP }} \mathbf{R}_{M+1 \underline{a}_{M}}=\left[\begin{array}{c}
P_{M} \\
\underline{0}
\end{array}\right] \quad \underline{B L P} \mathbf{R}_{M+1} \underline{a}_{M}^{B^{*}}=\left[\begin{array}{c}
\underline{0} \\
P_{M}
\end{array}\right]
$$

As \mathbf{R}_{M+1} is usually non-singular, \underline{a}_{M} may be obtained by inverting \mathbf{R}_{M+1}, or Gaussian elimination for solving equation array:
\Rightarrow Computational complexity $O\left(M^{3}\right)$.

Motivation for More Efficient Structure

Complexity in solving a general linear equation array:

- Method-1: invert the matrix, e.g. compute determinant of \mathbf{R}_{M+1} matrix and the adjacency matrices
\Rightarrow matrix inversion has $O\left(M^{3}\right)$ complexity
- Method-2: use Gaussian elimination
\Rightarrow approximately $M^{3} / 3$ multiplication and division
By exploring the structure in the matrix and vectors in LP, Levison-Durbin recursion can reduce complexity to $O\left(M^{2}\right)$
- M steps of order recursion, each step has a linear complexity w.r.t. intermediate order
- Memory use: Gaussian elimination $O\left(M^{2}\right)$ for the matrix, vs. Levinson-Durbin $O(M)$ for the autocorrelation vector and model parameter vector.

Levinson-Durbin recursion

The Levinson-Durbin recursion is an order-recursion to efficiently solve the Augmented N.E.
M steps of order recursion, each step has a linear complexity w.r.t. intermediate order

The recursion can be stated in two ways:
(1) Forward prediction point of view
(2) Backward prediction point of view

Two Points of View of LD Recursion

Denote $\underline{a}_{m} \in \mathbb{C}^{(m+1) \times 1}$ as the tap weight vector of a forward-prediction-error filter of order $m=0, \ldots, M$.
$a_{m-1,0}=1, a_{m-1, m} \triangleq 0, a_{m, m}=\Gamma_{m}$ (a constant "reflection coefficient")

Forward prediction point of view

$a_{m, k}=a_{m-1, k}+\Gamma_{m} a_{m-1, m-k}^{*}, k=0,1, \ldots, m$
In vector form: $\underline{a}_{m}=\left[\begin{array}{c}\underline{a}_{m-1} \\ 0\end{array}\right]+\Gamma_{m}\left[\begin{array}{c}0 \\ \underline{a}_{m-1}^{B^{*}}\end{array}\right](* *)$

Backward prediction point of view

$a_{m, m-k}^{*}=a_{m-1, m-k}^{*}+\Gamma_{m}^{*} a_{m-1, k}, k=0,1, \ldots, m$
In vector form: $\underline{a}_{m}^{B^{*}}=\left[\begin{array}{c}0 \\ \underline{a}_{m-1}^{B^{*}}\end{array}\right]+\Gamma_{m}^{*}\left[\begin{array}{c}\underline{a}_{m-1} \\ 0\end{array}\right]$
(can be obtained by reordering and conjugating ($* *$))
(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γ_{m}; (5) Δ_{m}
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Recall: Forward and Backward Prediction Errors

- $f_{m}[n]=u[n]-\hat{u}[n]=\underline{a}_{m}^{H} \quad \underbrace{\mu[n]}$

$$
(m+1) \times 1
$$

- $b_{m}[n]=u[n-m]-\hat{u}[n-m]=\underline{a}_{m}^{B, T} \underline{u}[n]$
(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γ_{m}; (5) Δ_{m}
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(3) Rationale of the Recursion

Left multiply both sides of ($* *$) by \mathbf{R}_{m+1} :
LHS: $\mathbf{R}_{m+1} \underline{a}_{m}=\left[\begin{array}{l}P_{m} \\ \underline{0}_{m}\end{array}\right]$ (by augmented N.E.)
RHS (1): $\mathbf{R}_{m+1}\left[\begin{array}{c}\underline{a}_{m-1} \\ 0\end{array}\right]=\left[\begin{array}{ll}\mathbf{R}_{m} & \underline{r}_{m}^{B^{*}} \\ \underline{r}_{m}^{B T} & r(0)\end{array}\right]\left[\begin{array}{c}\underline{a}_{m-1} \\ 0\end{array}\right]$
$=\left[\begin{array}{c}\mathbf{R}_{m} \underline{a}_{m-1} \\ \underline{r}_{m}^{B T} \underline{a}_{m-1}\end{array}\right]=\left[\begin{array}{c}P_{m} \\ \underline{0}_{m-1} \\ \Delta_{m-1}\end{array}\right]$ where $\Delta_{m-1} \triangleq \underline{r}_{m}^{B T} \underline{a}_{m-1}$
$\operatorname{RHS}(2): \mathbf{R}_{m+1}\left[\begin{array}{c}0 \\ \underline{a}_{m-1}^{B *}\end{array}\right]=\left[\begin{array}{cc}r(0) & \underline{r}^{H} \\ \underline{r} & \mathbf{R}_{m}\end{array}\right]\left[\begin{array}{c}0 \\ \underline{a}_{m-1}^{B *}\end{array}\right]$

$$
=\left[\begin{array}{c}
\underline{r}^{H} \underline{a}_{m-1}^{B *} \\
\mathbf{R}_{m} \underline{a}_{m-1}^{B *}
\end{array}\right]=\left[\begin{array}{c}
\Delta_{m-1}^{*} \\
\underline{0}_{m-1} \\
P_{m-1}
\end{array}\right]
$$

Computing Γ_{m}

Put together LHS and RHS: for the order update recursion $(* *)$ to hold, we should have

$$
\begin{aligned}
& {\left[\begin{array}{l}
P_{m} \\
\underline{0}_{m}
\end{array}\right]=\left[\begin{array}{c}
P_{m-1} \\
\underline{o}_{m-1} \\
\Delta_{m-1}
\end{array}\right]+\Gamma_{m}\left[\begin{array}{c}
\Delta_{m-1}^{*} \\
\underline{0}_{m-1} \\
P_{m-1}
\end{array}\right]} \\
& \Rightarrow\left\{\begin{array}{l}
P_{m}=P_{m-1}+\Gamma_{m} \Delta_{m-1}^{*} \\
0=\Delta_{m-1}+\Gamma_{m} P_{m-1}
\end{array} \Rightarrow\right.
\end{aligned}
$$

$$
\begin{gathered}
a_{m, m}=\Gamma_{m}=-\frac{\Delta_{m-1}}{P_{m-1}} \\
P_{m}=P_{m-1}\left(1-\left|\Gamma_{m}\right|^{2}\right)
\end{gathered}
$$

Caution: not to confuse P_{m} and Γ_{m} !

(4) Reflection Coefficients Γ_{m}

To ensure the prediction MSE $P_{m} \geq 0$ and P_{m} non-increasing when we increase the order of the predictor (i.e., $0 \leq P_{m} \leq P_{m-1}$), we require $\left|\Gamma_{m}\right|^{2} \leq 1$ for $\forall m>0$.

Let $P_{0}=r(0)$ as the initial estimation error has power equal to the signal power (i.e., no regression is applied), we have

$$
P_{M}=P_{0} \cdot \prod_{m=1}^{M}\left(1-\left|\Gamma_{m}\right|^{2}\right)
$$

Question: Under what situation $\Gamma_{m}=0$?
i.e., increasing order won't reduce error.

Consider a process with Markovian-like property in 2nd order statistic sense (e.g. AR process) s.t. info of further past is contained in k recent samples

(5) About Δ_{m}

Cross-correlation of BLP error and FLP error : can be shown as $\Delta_{m-1}=\mathbb{E}\left[b_{m-1}[n-1] f_{m-1}^{*}[n]\right]$
(Derive from the definition $\Delta_{m-1} \triangleq \underline{r}_{m}^{B T} \underline{a}_{m-1}$, and use definitions of $b_{m-1}[n-1], f_{m-1}^{*}[n]$ and orthogonality principle.)

Thus the reflection coefficient can be written as

$$
\Gamma_{m}=-\frac{\Delta_{m-1}}{P_{m-1}}=-\frac{\mathbb{E}\left[b_{m-1}[n-1] f_{m-1}^{*}[n]\right]}{\mathbb{E}\left[\left|f_{m-1}[n]\right|^{2}\right]}
$$

Note: for the 0th order predictor, use mean value (zero) as estimate, s.t. $f_{0}[n]=u[n]=b_{0}[n]$,
$\therefore \Delta_{0}=\mathbb{E}\left[b_{0}[n-1] f_{0}^{*}[n]\right]=\mathbb{E}\left[u[n-1] u^{*}[n]\right]=r(-1)=r^{*}(1)$
(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γ_{m}; (5) Δ_{m}
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

Preview: Relations of w.s.s and LP Parameters

For w.s.s. process $\{u[n]\}$:

(1) Motivation; (2) The Recursion; (3) Rationale
(4) Reflection Coefficients Γ_{m}; (5) Δ_{m}
(6) forward recursion; (7) inverse recursion;
(8) 2nd-order stat
(6) Computing \underline{a}_{M} and P_{M} by Forward Recursion

Case-1 : If we know the autocorrelation function $r(\cdot)$:
(1) $\Delta_{0}=r(-1), P_{0}=r(0)$
(1) for $m=1, \ldots M$ (order recursion)

$$
\begin{aligned}
& P_{m}=-\frac{\Delta m-1}{P_{m-1}} \quad \text { (diff predictor parameters for order-m) } \\
& {\left[\begin{array}{l}
\text { for } k=1, \ldots m \quad a_{m, k}=a_{m-1, k}+\Gamma_{m} a_{m-1, m-k}^{*} \\
\left(\text { where } a_{m-1,0}=1 ; a_{m-1, m}=0\right) \\
\Delta_{m}=\Gamma_{m+1}^{B^{\top}} a_{m} \\
P_{m}=P_{m-1}\left(1-\left|P_{m}\right|^{2}\right)
\end{array}\right.}
\end{aligned}
$$

- \# of iterations $=\sum_{m=1}^{M} m=\frac{M(M+1)}{2}$, comp. complexity is $O\left(M^{2}\right)$
- $r(k)$ can be estimated from time average of one realization of $\{u[n]\}$:

$$
\hat{r}(k)=\frac{1}{N-k} \sum_{n=k+1}^{N} u[n] u^{*}[n-k], k=0,1, \ldots, M
$$

(recall correlation ergodicity)
(6) forward recursion; (7) inverse recursion; (8) 2nd-order stat

(6) Computing \underline{a}_{M} and P_{M} by Forward Recursion

Case-2 : If we know $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{M}$ and $P_{0}=r(0)$, we can carry out the recursion for $m=1,2, \ldots, M$:

$$
\left\{\begin{array}{l}
a_{m, k}=a_{m-1, k}+\Gamma_{m} a_{m-1, m-k}^{*}, k=1, \ldots, m \\
P_{m}=P_{m-1}\left(1-\left|\Gamma_{m}\right|^{2}\right)
\end{array}\right.
$$

Note: $a_{m, m}=a_{m-1, m}+\Gamma_{m} a_{m-1,0}^{*}=0+\Gamma_{m} \cdot 1=\Gamma_{m}$

(7) Inverse Form of Levinson-Durbin Recursion

Given the tap-weights \underline{a}_{M}, find the reflection coefficients $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{M}$:
Recall: $\left\{\begin{array}{l}\text { (FP) } a_{m, k}=a_{m-1, k}+\Gamma_{m} a_{m-1, m-k}^{*}, k=0, \ldots, m \\ \text { (BP) } a_{m, m-k}^{*}=a_{m-1, m-k}^{*}+\Gamma_{m}^{*} a_{m-1, k}, a_{m, m}=\Gamma_{m}\end{array}\right.$
Multiply (BP) by Γ_{m} and subtract from (FP):
$a_{m-1, k}=\frac{a_{m, k}-\Gamma_{m} a_{m, m-k}^{*}}{1-\left|\Gamma_{m}\right|^{2}}=\frac{a_{m, k}-a_{m, m} a_{m, m-k}^{*}}{1-\left|a_{m, m}\right|^{2}}, k=0, \ldots, m$
$\Rightarrow \Gamma_{m}=a_{m, m}, \Gamma_{m-1}=a_{m-1, m-1}, \ldots, \quad$ i.e., From $\underline{a}_{M} \Rightarrow \underline{a}_{m} \Rightarrow \Gamma_{m}$
iterate with $m=M-1, M-2, \ldots \quad$ to lower order
see $\S 5$ Lattice structure:

(8) Autocorrelation Function \& Reflection Coefficients

The 2nd-order statistics of a stationary time series can be represented in terms of autocorrelation function $r(k)$, or equivalently the power spectral density by taking DTFT.

Another way is to use $r(0), \Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{M}$.

To find the relation between them, recall:
$\Delta_{m-1} \triangleq \underline{r}_{m}^{B T} \underline{a}_{m-1}=\sum_{k=0}^{M-1} a_{m-1, k} r(-m+k)$ and $\Gamma_{m}=-\frac{\Delta_{m-1}}{P_{m-1}}$
$\Rightarrow-\Gamma_{m} P_{m-1}=\sum_{k=0}^{m-1} a_{m-1, k} r(k-m)$, where $a_{m-1,0}=1$.

(8) Autocorrelation Function \& Reflection Coefficients

(1) $r(m)=r^{*}(-m)=-\Gamma_{m}^{*} P_{m-1}-\sum_{k=1}^{m-1} a_{m-1, k}^{*} r(m-k)$

Given $r(0), \Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{M}$, can get \underline{a}_{m} using Levinson-Durbin recursion s.t. $r(1), \ldots, r(M)$ can be generated recursively.
(2) Recall if $r(0), \ldots, r(M)$ are given, we can get \underline{a}_{m}. So $\Gamma_{1}, \ldots, \Gamma_{M}$ can be obtained recursively: $\Gamma_{m}=a_{m, m}$
(3) These facts imply that the reflection coefficients $\left\{\Gamma_{k}\right\}$ can uniquely represent the 2 nd-order statistics of a w.s.s. process.
(6) forward recursion; (7) inverse recursion;
(8) 2nd-order stat

Summary
Statistical representation of w.s.s. process

(FLD)
(ALP)

Detailed Derivations/Examples

Example of Forward Recursion Case-2
e.g. (case 2). Given P_{1}, P_{2}, Γ_{3} and $P(0)$, find \underline{a}_{3} and P_{3} of a prediction-error filter of onder 3.
(0) $P_{0}=r(0)$
(1) $\quad m=1: \quad a_{1,0}=1 ; \quad a_{1,1}=P_{1} ; a_{1,2}=0 ; P_{1}=P_{0}\left(1-\left|P_{1}\right|^{2}\right)$
(2) $m=2$:

$$
\begin{aligned}
& a_{2,0}=1 ; a_{2,1}=a_{1,1}+P_{2} a_{1,1}^{*}=\frac{P_{1}+P_{2} \cdot P_{1}^{*}}{\text { wsed in } \delta 2,5,4 . \text { for }} \\
& a_{2,2}=P_{2} \\
& P_{2}=P_{1}\left(1-\left|P_{2}\right|^{2}\right)
\end{aligned}
$$

(3) $m=3$:

$$
\begin{aligned}
& a_{3,0}=1 ; a_{3,1}=a_{2,1}+\Gamma_{3} a_{2,2}^{*}=\Gamma_{1}+\Gamma_{2} P_{1}^{*}+P_{3} \cdot \Gamma_{2}^{*} \\
& a_{3,2}=a_{2,2}+P_{3} a_{2,1}^{*}=P_{2}+P_{3} P_{1}^{*}+P_{1} P_{2}^{*} P_{3} \\
& a_{3,3}=\Gamma_{3} \\
& P_{3}=P_{2}\left(1-\left|\Gamma_{3}\right|^{2}\right)
\end{aligned}
$$

